Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560995

RESUMO

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method, and the choice of genomic regions 1-3. Here, we address these issues by analyzing genomes of 363 bird species 4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a remarkable degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Paleogene (K-Pg) boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that challenge modeling due to extreme GC content, variable substitution rates, incomplete lineage sorting, or complex evolutionary events such as ancient hybridization. Assessment of the impacts of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates, and relative brain size following the K-Pg extinction event, supporting the hypothesis that emerging ecological opportunities catalyzed the diversification of modern birds. The resulting phylogenetic estimate offers novel insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.

3.
J Morphol ; 284(1): e21530, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314971

RESUMO

The continued use of the idea of homology is questionable on philosophical and scientific grounds. It is based on the widespread idea that a "homologue" in extant taxa can be "traced back" to a feature in common ancestor. In contrast, Richard Owen, who first used the term in 1846, saw homology (homologue) differently, as "sameness": "the same organ in different animals under every variety of form and function." At that point in time, he was not influenced by evolutionary thinking, and more focused on the details and approaches to biological comparison and description. His was a perceptive approach to comparison. This paper argues that the concept of homology no longer plays a useful role in comparative biology. It is a conceptual idea with little or no empirical implications for modern comparisons among phenotypes. Comparative biology now uses formal phylogenetic analysis in which similar features in individuals of two or more taxa are treated as characters on a tree and tested for historical "sameness" in terms of the concept of synapomorphy. If we are to understand the complexities of phenotypic evolution, applying this method to detailed comparative data will be essential. At the same time, a deep understanding of the phenotype and its history will emerge only through the use of multidisciplinary approaches that address historical changes at different hierarchical levels.


Assuntos
Evolução Biológica , Biologia , Animais , Filogenia , Fenótipo
4.
Curr Biol ; 32(20): R1068-R1069, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36283364

RESUMO

Joel Cracraft introduces the Hoatzin (Opisthocomus hoazin), an odd and enigmatic bird that defies classification.


Assuntos
Aves , Animais
5.
Syst Biol ; 71(6): 1423-1439, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35703981

RESUMO

The complex island archipelagoes of Wallacea and Melanesia have provided empirical data behind integral theories in evolutionary biology, including allopatric speciation and island biogeography. Yet, questions regarding the relative impact of the layered biogeographic barriers, such as deep-water trenches and isolated island systems, on faunal diversification remain underexplored. One such barrier is Wallace's Line, a significant biogeographic boundary that largely separates Australian and Asian biodiversity. To assess the relative roles of biogeographic barriers-specifically isolated island systems and Wallace's Line-we investigated the tempo and mode of diversification in a diverse avian radiation, Corvides (Crows and Jays, Birds-of-paradise, Vangas, and allies). We combined a genus-level data set of thousands of ultraconserved elements (UCEs) and a species-level, 12-gene Sanger sequence matrix to produce a well-resolved supermatrix tree that we leveraged to explore the group's historical biogeography and the effects of the biogeographic barriers on their macroevolutionary dynamics. The tree is well resolved and differs substantially from what has been used extensively for past comparative analyses within this group. We confirmed that Corvides, and its major constituent clades, arose in Australia and that a burst of dispersals west across Wallace's Line occurred after the uplift of Wallacea during the mid-Miocene. We found that dispersal across this biogeographic barrier was generally rare, though westward dispersals were two times more frequent than eastward dispersals. Wallacea's central position between Sundaland and Sahul no doubt acted as a bridge for island-hopping dispersal out of Australia, across Wallace's Line, to colonize the rest of Earth. In addition, we found that the complex island archipelagoes east of Wallace's Line harbor the highest rates of net diversification and are a substantial source of colonists to continental systems on both sides of this biogeographic barrier. Our results support emerging evidence that island systems, particularly the geologically complex archipelagoes of the Indo-pacific, are drivers of species diversification. [Historical biogeography; island biogeography; Melanesia; molecular phylogenetics; state-dependent diversification and extinction.].


Assuntos
Aves Canoras , Animais , Austrália , Ilhas , Melanesia , Filogenia , Aves Canoras/genética , Água
6.
Mol Phylogenet Evol ; 174: 107550, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691570

RESUMO

Phylogenetic analyses fail to yield a satisfactory resolution of some relationships in the tree of life even with genome-scale datasets, so the failure is unlikely to reflect limitations in the amount of data. Gene tree conflicts are particularly notable in studies focused on these contentious nodes, and taxon sampling, different analytical methods, and/or data type effects can further confound analyses. Although many efforts have been made to incorporate biological conflicts, few studies have curated individual genes for their efficiency in phylogenomic studies. Here, we conduct an edge-based analysis of Neoavian evolution, examining the phylogenetic efficacy of two recent phylogenomic bird datasets and three datatypes (ultraconserved elements [UCEs], introns, and coding regions). We assess the potential causes for biases in signal-resolution for three difficult nodes: the earliest divergence of Neoaves, the position of the enigmatic Hoatzin (Opisthocomus hoazin), and the position of owls (Strigiformes). We observed extensive conflict among genes for all data types and datasets even after meticulous curation. Edge-based analyses (EBA) increased congruence and provided information about the impact of data type, GC content variation (GCCV), and outlier genes on each of nodes we examined. First, outlier gene signals appeared to drive different patterns of support for the relationships among the earliest diverging Neoaves. Second, the placement of Hoatzin was highly variable, although our EBA did reveal a previously unappreciated data type effect with an impact on its position. It also revealed that the resolution with the most support here was Hoatzin + shorebirds. Finally, GCCV, rather than data type (i.e., coding vs non-coding) per se, was correlated with a signal that supports monophyly of owls + Accipitriformes (hawks, eagles, and vultures). Eliminating high GCCV loci increased the signal for owls + mousebirds. Categorical EBA was able to reveal the nature of each edge and provide a way to highlight especially problematic branches that warrant a further examination. The current study increases our understanding about the contentious parts of the avian tree, which show even greater conflicts than appreciated previously.


Assuntos
Aves , Genoma , Animais , Aves/genética , Íntrons , Filogenia
7.
Sci Adv ; 8(14): eabn1099, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394835

RESUMO

Large Amazonian rivers impede dispersal for many species, but lowland river networks frequently rearrange, thereby altering the location and effectiveness of river barriers through time. These rearrangements may promote biotic diversification by facilitating episodic allopatry and secondary contact among populations. We sequenced genome-wide markers to evaluate the histories of divergence and introgression in six Amazonian avian species complexes. We first tested the assumption that rivers are barriers for these taxa and found that even relatively small rivers facilitate divergence. We then tested whether species diverged with gene flow and recovered reticulate histories for all species, including one potential case of hybrid speciation. Our results support the hypothesis that river rearrangements promote speciation and reveal that many rainforest taxa are micro-endemic, unrecognized, and thus threatened with imminent extinction. We propose that Amazonian hyper-diversity originates partly from fine-scale barrier displacement processes-including river dynamics-which allow small populations to differentiate and disperse into secondary contact.

8.
Mol Phylogenet Evol ; 162: 107206, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34015447

RESUMO

Several bird taxa have been recently described or elevated to full species and almost twice as many bird species than are currently recognized may exist. Defining species is one of the most basic and important issues in biological science because unknown or poorly defined species hamper subsequent studies. Here, we evaluate the species limits and evolutionary history of Tunchiornis ochraceiceps-a widespread forest songbird that occurs in the lowlands of Central America, Chocó and Amazonia-using an integrative approach that includes plumage coloration, morphometrics, vocalization and genomic data. The species has a relatively old crown age (~9 Ma) and comprises several lineages with little, if any, evidence of gene flow among them. We propose a taxonomic arrangement composed of four species, three with a plumage coloration diagnosis and one deeply divergent cryptic species. Most of the remaining lineages have variable but unfixed phenotypic characters despite their relatively old origin. This decoupling of genomic and phenotypic differentiation reveals a remarkable case of phenotypic conservatism, possibly due to strict habitat association. Lineages are geographically delimited by the main Amazonian rivers and the Andes, a pattern observed in studies of other understory upland forest Neotropical birds, although phylogenetic relationships and divergence times among populations are idiosyncratic.


Assuntos
Variação Genética , Genômica , Filogenia , Aves Canoras/classificação , Aves Canoras/genética , Animais , Fluxo Gênico , Fenótipo
10.
Mol Phylogenet Evol ; 155: 107013, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217578

RESUMO

Target capture sequencing effectively generates molecular marker arrays useful for molecular systematics. These extensive data sets are advantageous where previous studies using a few loci have failed to resolve relationships confidently. Moreover, target capture is well-suited to fragmented source DNA, allowing data collection from species that lack fresh tissues. Herein we use target capture to generate data for a phylogeny of the avian family Pipridae (manakins), a group that has been the subject of many behavioral and ecological studies. Most manakin species feature lek mating systems, where males exhibit complex behavioral displays including mechanical and vocal sounds, coordinated movements of multiple males, and high speed movements. We analyzed thousands of ultraconserved element (UCE) loci along with a smaller number of coding exons and their flanking regions from all but one species of Pipridae. We examined three different methods of phylogenetic estimation (concatenation and two multispecies coalescent methods). Phylogenetic inferences using UCE data yielded strongly supported estimates of phylogeny regardless of analytical method. Exon probes had limited capability to capture sequence data and resulted in phylogeny estimates with reduced support and modest topological differences relative to the UCE trees, although these conflicts had limited support. Two genera were paraphyletic among all analyses and data sets, with Antilophia nested within Chiroxiphia and Tyranneutes nested within Neopelma. The Chiroxiphia-Antilophia clade was an exception to the generally high support we observed; the topology of this clade differed among analyses, even those based on UCE data. To further explore relationships within this group, we employed two filtering strategies to remove low-information loci. Those analyses resulted in distinct topologies, suggesting that the relationships we identified within Chiroxiphia-Antilophia should be interpreted with caution. Despite the existence of a few continuing uncertainties, our analyses resulted in a robust phylogenetic hypothesis of the family Pipridae that provides a comparative framework for future ecomorphological and behavioral studies.


Assuntos
Loci Gênicos , Passeriformes/classificação , Passeriformes/genética , Filogenia , Animais , Sequência de Bases , Éxons/genética , Funções Verossimilhança , Especificidade da Espécie
11.
Science ; 370(6522): 1343-1348, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303617

RESUMO

The tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1283 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time. Paradoxically, the highest speciation rates are in lineages from regions with low species diversity, which are generally cold, dry, unstable environments. Our results reveal a model in which species are forming faster in environmental extremes but have accumulated in moderate environments to form tropical biodiversity hotspots.


Assuntos
Biodiversidade , Aves/classificação , Aves/genética , Animais , Especiação Genética , Filogenia
12.
Nature ; 587(7833): 252-257, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177665

RESUMO

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Assuntos
Aves/classificação , Aves/genética , Genoma/genética , Genômica/métodos , Genômica/normas , Filogenia , Animais , Galinhas/genética , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Tentilhões/genética , Humanos , Seleção Genética/genética , Sintenia/genética
13.
Ecol Evol ; 10(19): 10593-10606, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072282

RESUMO

Understanding how co-occurring species divide ecological space is a central issue in ecology. Functional traits have the potential to serve as a means for quantitatively assessing niche partitioning by different species based on their ecological attributes, such as morphology, behavior, or trophic habit. This enables testing ecological and evolutionary questions using functional traits at spatio-temporal scales that are not feasible using traditional field methods. Both rapid evolutionary change and inter- and intraspecific competition, however, may limit the utility of morphological functional traits as indicators of how niches are partitioned. To address how behavior and morphology interact, we quantified foraging behavior of mixed-species flocks of birds in the Solomon Islands to test whether behavior and morphology are correlated in these flocks. We find that foraging behavior is significantly correlated with morphological traits (p = .05), but this correlation breaks down after correcting for phylogenetic relatedness (p = .66). These results suggest that there are consistent correlations between aspects of behavior and morphology at large taxonomic scales (e.g., across genera), but the relationship between behavior and morphology depends largely on among-clade differences and may be idiosyncratic at shallower scales (e.g., within genera). As a result, general relationships between behaviors and morphology may not be applicable when comparing close relatives.

14.
Mol Phylogenet Evol ; 140: 106581, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430551

RESUMO

Dendrocincla woodcreepers are ant-following birds widespread throughout tropical America. Species in the genus are widely distributed and show little phenotypic variation. Notwithstanding, several subspecies have been described, but the validity of some of these taxa and the boundaries among them have been discussed for decades. Recent genetic evidence based on limited sampling has pointed to the paraphyly of D. fuliginosa, showing that its subspecies constitute a complex that also includes D. anabatina and D. turdina. In this study we sequenced nuclear and mitochondrial markers for over two hundred individuals belonging to the D. fuliginosa complex to recover phylogenetic relationships, describe intraspecific genetic diversity and provide historical biogeographic scenarios of diversification. Our results corroborate the paraphyly of D. fuliginosa, with D. turdina and D. anabatina nested within its recognized subspecies. Recovered genetic lineages roughly match the distributions of described subspecies and congruence among phylogenetic structure, phenotypic diagnosis and distribution limits were used to discuss current systematics and taxonomy within the complex, with special attention to Northern South America. Our data suggest the origin of the complex in western Amazonia, associated with the establishment of upland forests in the area during the early Pliocene. Paleoclimatic cycles and river rearrangements during the Pleistocene could have, at different times, both facilitated dispersal across large Amazonian rivers and the Andes and isolated populations, likely playing an important role in differentiation of extant species. Previously described hybridization in the headwaters of the Tapajós river represents a secondary contact of non-sister lineages that cannot be used to test the role of the river as primary source of diversification. Based on comparisons of D. fuliginosa with closely related understory upland forest taxa, we suggest that differential habitat use could influence diversification processes in a historically changing landscape, and should be considered for proposing general mechanisms of diversification.


Assuntos
Biodiversidade , Geografia , Passeriformes/classificação , Animais , Sequência de Bases , Teorema de Bayes , Brasil , Núcleo Celular/genética , DNA Mitocondrial/genética , Florestas , Loci Gênicos , Variação Genética , Haplótipos/genética , Passeriformes/genética , Filogenia , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
15.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936315

RESUMO

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Assuntos
Passeriformes , Animais , Austrália , Biodiversidade , Evolução Biológica , Fósseis , Nova Zelândia , Passeriformes/classificação , Passeriformes/genética , Passeriformes/fisiologia , Filogenia
16.
Proc Biol Sci ; 286(1900): 20182343, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30940057

RESUMO

Amazonia is a 'source' of biodiversity for other Neotropical ecosystems, but which conditions trigger in situ speciation and emigration is contentious. Three hypotheses for how communities have assembled include (1) a stochastic model wherein chance dispersal events lead to gradual emigration and species accumulation, (2) diversity-dependence wherein successful dispersal events decline through time due to ecological limits, and (3) barrier displacement wherein environmental change facilitates dispersal to other biomes via transient habitat corridors. We sequenced thousands of molecular markers for the Neotropical Tityrinae (Aves) and applied a novel filtering protocol to identify loci with high utility for dated phylogenomics. We used these loci to estimate divergence times and model Tityrinae's evolutionary history. We detected a prominent role for speciation driven by barriers including synchronous speciation across the Andes and found that dispersal increased toward the present. Because diversification was continuous but dispersal was non-random over time, we show that barrier displacement better explains Tityrinae's history than stochasticity or diversity-dependence. We propose that Amazonia is a source of biodiversity because (1) it is a relic of a biome that was once more extensive, (2) environmentally mediated corridors facilitated emigration and (3) constant diversification is attributed to a spatially heterogeneous landscape that is perpetually dynamic through time.


Assuntos
Distribuição Animal , Biodiversidade , Clima , Especiação Genética , Passeriformes/fisiologia , Animais , Evolução Biológica , Passeriformes/genética , Filogenia , América do Sul
17.
Mol Phylogenet Evol ; 129: 149-157, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30026124

RESUMO

Jacamar species occur throughout Amazonia, with most species occupying forested habitats. One species-complex, Galbula leucogastra/chalcothorax, is associated to white sand ecosystems (WSE). Previous studies of WSE bird species recovered shallow genetic structure in mtDNA coupled with signs of gene flow among WSE patches. Here, we characterize diversification of the G. leucogastra/chalcothorax species-complex with dense sampling across its distribution using mitochondrial and genomic (Ultraconserved Elements, UCEs) DNA sequences. We performed concatenated likelihood and Bayesian analysis, as well as a species-tree analysis using ∗BEAST, to establish the phylogenetic relationships among populations. The mtDNA results recovered at least six geographically-structured lineages, with G. chalcothorax embedded within lineages of G. leucogastra. In contrast, both concatenated and species-tree analyses of UCE data recovered G. chalcothorax as sister to all G. leucogastra lineages. We hypothesize that the mitochondrial genome of one of the G. leucogastra lineage (Madeira) was captured into G. chalcothorax in the past. We discuss how WSE evolution and the coevolution of mtDNA and nuclear genes might have played a role in this apparently rare event.


Assuntos
Evolução Biológica , Aves/genética , DNA Mitocondrial/genética , Ecossistema , Animais , Teorema de Bayes , Brasil , Núcleo Celular/genética , Fluxo Gênico , Loci Gênicos , Genoma Mitocondrial , Haplótipos/genética , Mitocôndrias/genética , Filogenia , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
18.
Mol Phylogenet Evol ; 118: 204-221, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951253

RESUMO

Phylogeographic studies within the Neotropics continue to uncover hidden diversity, the extent of which remains poorly known. In birds, molecular studies are producing evidence that species-level diversity is substantially underestimated. Many avian taxa comprise large complexes of subspecies that often represent species-level taxa by various criteria. One such group of Neotropical suboscine birds, the becards (Pachyramphus), ranges from Argentina through northern Mexico. Their taxonomic limits have been complex and controversial as the genus has bounced around a number of suboscine families. Additionally, the phylogenetic relationships within Pachyramphus are unresolved due to insufficient sampling of taxa and populations across species' ranges. We used target capture of ultraconserved elements for 62 individuals representing 42 taxa, and sequenced two mitochondrial genes and two nuclear introns covering 265 individuals of 51 taxa, including all recognized species, resulting in the most densely and completely sampled phylogenetic hypothesis for Pachyramphus to date. We delimited species using a traditional taxonomic approach and then tested them under a Bayesian multi-species coalescent framework. In doing so, we provide evidence for multiple young, previously undetected evolutionary lineages within Pachyramphus. Deep, well-supported branches and a high number of intraspecific lineages across the tree suggest that at least 50% of species diversity may be unrecognized.


Assuntos
Genômica , Passeriformes/classificação , Passeriformes/genética , Filogenia , Clima Tropical , Animais , Argentina , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/genética , Loci Gênicos , Funções Verossimilhança , México , Filogeografia , Especificidade da Espécie
19.
Mol Phylogenet Evol ; 107: 503-515, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28012956

RESUMO

A revision of the avian Neotropical genus Automolus and the Furnariidae family points to the paraphyly of A. infuscatus and reveals a species complex comprising A. infuscatus, A. ochrolaemus, A. paraensis, A. leucophthalmus, A. lammi and A. subulatus, the latter historically classified in the genus Hyloctistes. Detailed knowledge of the taxonomy, geographic distribution, phylogenetic relationship and divergence times of a taxon allows exploration of its evolutionary history and the testing of different scenarios of diversification. In this context, we studied the A. infuscatus complex using molecular data in order to unveil its cryptic diversity and reveal its evolutionary history. For that we sequenced two mitochondrial (ND2 and cytb) and three nuclear markers (G3PDH, ACO, Fib7) for 302 individuals belonging to all species in the complex and most described subspecies. Our analysis supports the paraphyly of A. infuscatus, indicating the existence of at least two distinct clades not closely related. The remaining species were all recovered as monophyletic. Notwithstanding, a well-structured intraspecific diversity was found with 19 lineages suggesting substantial cryptic diversity within the described species. A. subulatus was recovered within the complex, corroborating its position inside the genus. In spite of the high congruence between distributions of different lineages, with several sister lineages currently separated by the same barriers, the temporal incongruence between divergences over the same barriers reveals a complex evolutionary history. While older events might be related to the emergence of barriers such as the Andes and major Amazonian rivers, younger events suggest dispersal after the consolidation of those barriers. Our analysis suggests that the complex had its origin around 6million years (Ma) and inhabited Western Amazonia in Late Miocene-Early Pliocene. Considering the riparian habit of species in its sister clade, the rise and early diversifications of the complex may be related to the establishment of terra firme forests as it changed from a floodplain to a fluvial system. The late Amazonian colonization by A. subulatus and A. ochrolaemus lineages may have been hampered by the previous existence of well established A. infuscatus lineages in the region.


Assuntos
Variação Genética , Passeriformes/classificação , Passeriformes/genética , Filogenia , Filogeografia , Animais , Sequência de Bases , Teorema de Bayes , Brasil , Núcleo Celular/genética , DNA Mitocondrial/genética , Demografia , Genes Mitocondriais , Loci Gênicos , Especificidade da Espécie
20.
PLoS One ; 11(11): e0166307, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27880775

RESUMO

Estimates of global species diversity have varied widely, primarily based on variation in the numbers derived from different inventory methods of arthropods and other small invertebrates. Within vertebrates, current diversity metrics for fishes, amphibians, and reptiles are known to be poor estimators, whereas those for birds and mammals are often assumed to be relatively well established. We show that avian evolutionary diversity is significantly underestimated due to a taxonomic tradition not found in most other taxonomic groups. Using a sample of 200 species taken from a list of 9159 biological species determined primarily by morphological criteria, we applied a diagnostic, evolutionary species concept to a morphological and distributional data set that resulted in an estimate of 18,043 species of birds worldwide, with a 95% confidence interval of 15,845 to 20,470. In a second, independent analysis, we examined intraspecific genetic data from 437 traditional avian species, finding an average of 2.4 evolutionary units per species, which can be considered proxies for phylogenetic species. Comparing recent lists of species to that used in this study (based primarily on morphology) revealed that taxonomic changes in the past 25 years have led to an increase of only 9%, well below what our results predict. Therefore, our molecular and morphological results suggest that the current taxonomy of birds understimates avian species diversity by at least a factor of two. We suggest that a revised taxonomy that better captures avian species diversity will enhance the quantification and analysis of global patterns of diversity and distribution, as well as provide a more appropriate framework for understanding the evolutionary history of birds.


Assuntos
Aves/genética , Animais , Biodiversidade , Aves/anatomia & histologia , Aves/classificação , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA